Frying mastery: The science
of crafting the perfect french fry

The potato: simple, plain, grown in the earth, a side dish to many mains. But also the fundamental element of one of the world’s most treasured comfort foods — the french fry. However, not all potatoes are created equal when it comes to perfecting the fry.

The perfect fry, for the purpose of this science lesson, equals crispy and golden on the outside and soft (but cooked) on the inside. But this end game can be achieved only with the perfect beginning. Quality potato selection is imperative to making the perfect fry.

The most popular potato for french fries in the United States, home of fast food, is the russet — the primary potato used by McDonald’s. Most commonly used is the Russet Burbank, but McDonald’s also uses several varieties of russet for its fries.

If you can’t locate these in your local supermarket, you’ll want to find a potato that is high in starch but low in moisture. The starch achieves caramelization, resulting in a crispy exterior, and low moisture ensures you won’t be left disappointed with soggy fries. But remember, the higher the starch content, the darker the fries are likely to be.

The Russet Burbank is also popular due to its nutritional value.

This apple of the earth is loaded with vitamins C and B6 and is high in antioxidants. And if you’re looking for protein, fiber and iron, the peel-on fry is the way to go.

Now that you’ve acquired the perfect potato, it’s time to select the perfect oil.

There are factors to consider when choosing the right oil for cooking french fries. The correct oil can affect the texture and the flavor of your finished product.

Thermometer manufacturer ThermoWorks recommends oil that has no flavor as it can transfer to your food. The oil’s ability to take the heat also contributes to flavor.


Smoke point is how the oil behaves when exposed to high temperatures. If the oil has a low smoke point, it will burn at high temperatures and transfer the burnt flavor to your fries. So choose an oil that has a higher smoke point.

Oils with higher smoke points are those that are refined (processed) like avocado oil, canola oil and peanut oil. While avocado oil has the highest smoke point at about 510 degrees Fahrenheit, it seems peanut oil is the winner of the oil contest with its lower saturated fat levels, richness in vitamin D and smoke point of 450 degrees Fahrenheit. It is also the chosen oil of U.S. restaurant giant Chick Fil A

 

IMAGE CREDIT: Unsplash

Now that the shopping is done, it’s time to prep and get cooking.

To soak or not to soak?

It really depends on whether you like your fries dark or golden. Soaking your cut fries for 1-2 hours will reduce the amount of sugars on the outside, allowing for golden crispiness, but not soaking will result in more caramelization and leave your fries much darker. It can also result in burning. The blanching process can also reduce the amount of nutrients remaining. And the thicker they are, the longer you’ll have to cook them.

Your preference for french fry thickness will determine the length of time on the cook as it also dictates the time it takes for the heat to reach the center of the fry.

The fry: once or twice? And what is the point?

The double fry seems to be a popular method of achieving a thicker, crispier and more stable outer layer with a soft inside. The first fry is at lower heat (325 degrees Fahrenheit) and the second fry is done at a higher heat (400 degrees Fahrenheit). Potatoes have two types of water molecules, those that are bound tightly to the potato and those that are loosely bound. During the first fry, the hot oil evaporates the loosely bound molecules and mobilizes the starch to form an outer covering, protecting the fry from drying out. The second fry is to achieve the golden, crunchy goodness.

Now that you’ve achieved a french fry work of art, the final stroke is the topping of your choice and celebrating National French Fry Day the way it was intended.

The french fry market in 2021 was valued at U.S.$16.2 billion globally and is expected to grow to U.S.$22.9 billion by 2029.

Beams of light through your head?
Yep, it’s possible

A team of researchers at the University of Glasgow recently proved that a beam of light can travel the entire span of an adult human head.

The team used high-powered computer models and extremely sensitive light detectors, shining the light into one side of the head and picking it up on the other side. This was once thought to be impossible.

The adult head is thick and packed with tissue that usually scatters or absorbs light, but with the right conditions (fair skin, no hair and a little patience), photons made the full 15.5 centimeter journey.

This is important because it could lead to non-invasive ways to observe deeper areas of the brain. Current tools like fNIRs can only reach the surface level and large, expensive equipment like MRI machines are required for this kind of brain inspection.

This could mean life-threatening conditions like brain bleeds or tumors may one day be identified without invasive surgeries or large-scale equipment.

It’s still early days, but the faint signal indicates that next-gen brain scans using only light may one day be in the cards.

The study was published in Neurophotonics.

More like this: The AI will see you now

The science behind global chocolate
obsession

Dark, milk, white, flavored with orange, mint, strawberry and the growing favorite — salted caramel —approximately 7.5 million tons of chocolate are consumed annually. But there are reasons chocolate, celebrated around the world on Sept. 13, International Chocolate Day, is so beloved and it’s not just that it tastes so good.

How did it get so delicious? That is a tale of innovation.

The Swiss have been perfecting chocolate since the early 19th century. Francois-Louis Cailler, took the granular texture of the cocoa bean to a smooth chocolate bar. Then world-renowned chocolatier Rudolph Lindt perfected that recipe by adding cocoa butter with a machine he invented called a conche.

But why does the vast majority of the world love it so much?


It’s a chemical thing. The ingredients and chemicals in chocolate have positive effects on our brains and bodies. It’s not necessarily the individual amounts, but the chemicals combined that result in the desired effect.

First on the chocolate inventory list is phenylethylamine, the catalyst in the release of endorphins and an increase in serotonin and dopamine — offering feelings of happiness and contentment. Phenylethylamine is also the chemical released by the brain when you are in love. So it’s with good reason we give in to the impulse buy stack of chocolate at the grocery check-out.

Additionally, the stimulant theobromine offers chocolate eaters a bit of a boost. This ingredient causes a similar energy lift as caffeine, but the effects of theobromine will last longer. Chocolate also contains the real caffeine deal with nearly 25 percent of the caffeine in the average 8-ounce cup of coffee.

So far, we’re happy, content and feeling wide awake and energetic. What’s next?

IMAGE: Freepik

L-tryptophan is an amino acid that makes essential proteins and is not produced naturally by the body, so we get it from the foods we consume. And yes, chocolate has this too. Combined with the sugar carbohydrates in chocolate, this magic chemical, like serotonin, offers us a little chill-out vibe.

And one of the big winners is polyphenol — a valuable antioxidant found in various foods that protects the brain. It is often used as a supplement for those struggling with psychiatric or cognitive challenges as it has less harmful side effects than medications.

So now we know why chocolate makes us feel good, but there are health benefits to a moderate relationship with chocolate — most commonly dark chocolate.

According to Johns Hopkins Medicine, some chocolate has a positive effect on heart health. So, if you’re reaching for a fix and hoping to feel good about your choice, come over to the dark side.

It’s those magic antioxidants again.

The most impactful is flavonol — a phytochemical compound called epicatechin found in dark chocolate that offers a number of health benefits.

Epicatechin lowers the risk of heart disease and stroke by reducing blood pressure and increasing healthy blood flow to the heart. It offers immune-system stability, preventing an overactivity linked to some diseases. It also helps the body use insulin properly, combatting diabetes.

Those are the health benefits of the things epicatechin reduces in our bodies, but what are the gains?

Well, it offers some welcome gifts to our brains. These include a memory boost, increased response time and better visual acuity. In addition, epicatechin reduces the amount of oxygen required by athletes, increasing the volume of nitric oxide in the bloodstream so they can perform longer.


There is a long list of reasons dark chocolate should be a welcomed addition to our diets but it is also important to maintain a healthy and moderate relationship with the delicious treat. Sugar content and high carbohydrates are things to watch for.

Too much can counter all of the good it can do for us in moderation. According to Health Digest, “A diet high in sugar-rich chocolate can be a factor in the development of insulin resistance, which can lead to Type 2 diabetes.”

And Type 2 diabetes can lead to blindness, heart disease, stroke, nerve damage and kidney disease.

So, as you reach for your chocolatey favorite this International Chocolate Day, remember—chocolate is your friend, but consider it a fair-weather one.

Warning signs of MS

A new study published in Nature Medicine identifies a new type of brain lesion in patients with multiple sclerosis (MS) that might be an indicator of fast disease progression.

These broad rim lesions (BRLs) were mainly discovered in those whose MS progressed quickly, indicating they are an important clue for doctors.

BRLs are like hotspots of inflammation. They have a thick, active outer layer that is filled with immune cells that appear to create discord in the spinal cord and brain. Patients with these lesions were more prone to quicker disability and had more damage in essential parts of the nervous system.

By studying donor brain tissue and using high-tech imaging like PET scans, researchers were able to identify the lesions while people were still living. They were also able to identify a unique pattern of gene activity in BRLs and signs of stress inside cells.

Notably, the lesions may be used to predict the potential rapid decline of MS patients. Additionally, the research team identified possible targets for new treatments that may help to slow or stop the damage.

The findings may assist in earlier diagnosis, more effective treatment and possible new drugs for those facing aggressive forms of MS.

More like this: Launching medical research

Goodbye batteries, hello bugs

Rechargeable batteries have significantly reduced the environmental impact of battery waste, but there are still a lot of products out there requiring lithium-filled batteries that erode over time and leak chemicals into soil and water.

Researchers at Binghamton University have developed a tiny battery powered by probiotics to help, and it just dissolves after its battery life is depleted — no pollution, no recycling, no mess.

Rather than using toxic chemicals, the biobattery runs on 15 strains of innocuous probiotic bacteria. The power generated is straight from the natural process of these microbes just doing what they do — breaking down nutrients.

The device is printed on paper that ultimately dissolves in water and has a coating that breaks down in acidic environments like the human stomach or polluted soil.

Batteries aren’t part of the typical human diet, so why is this important?

The medical field is moving toward personalized medicine. Sometimes this means ingestible health monitors, implants, etc., that we would prefer not to leak toxins into our bodies. The limited low-power output is perfect for small devices like these offering up to 100 minutes use.

When it’s finished, it simply disappears — no toxic leftovers, no waste.

In future, versions could power even more impressive tech, but for now this is a significant step toward greener, safer and smarter electronics.

The paper was published in Small.

More like this: My electric vehicle has a weight problem